

UNMANNED SYSTEMS WEEK

WELCOME TO
POSITIONING, NAVIGATION, AND GUIDANCE FOR UNMANNED SYSTEMS

Monday, June 2, 2014

11 am-12:30 PDT Noon-1:30 pm Mountain 1 pm-2:30 pm Central 2 pm-3:30 pm Eastern

Audio is available via landline or VoIP-For VoIP: You will be connected to audio using your computer's speakers or headset. For Landline: Please select Use Audio Mode Use Telephone after joining the Webinar. **US/Canada attendees** dial +1 (516) 453-0031, Access 370-248-439

WELCOME TO Positioning, Navigation, and Guidance for Unmanned Systems

Sandy Kennedy
Director of Core Cards
NovAtel Inc

Andrey Soloviev
Principal
QuNav

Stephen Browne Executive Vice President Veripos

Co-Moderator: Lori Dearman, Sr. Webinar Producer

Who's In the Audience?

A diverse audience of professionals registered from 43 countries, 30 states and provinces representing the following industries:

- **21%** GNSS Equipment Manufacturer
- 17% Professional User
- **17%** System Integrator
- 17% Product/Application Designer
- 28% Other

Welcome from *Inside GNSS*

Glen Gibbons

Editor and Publisher Inside GNSS

Positioning, Navigation, and Guidance for Unmanned Systems

Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty University of Minnesota

Poll #1

What application are you interested in using unmanned systems for? (Select all that apply)

- Air
- Land
- Marine

Overview of Unmanned System PNT Requirements

Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty University of Minnesota

Unmanned Systems

Photo courtesy of FourthWing Sensors (Farm Intelligence²)

- Vehicles without a human operator onboard
 - Unmanned Aerial Vehicles (UAV)
 - Unmanned Ground Vehicles (UGV)
 - Unmanned Marine Vehicles (UMV)
- Ideal for the 3-Ds tasks: Dangerous,
 Dirty and Dull

Photos courtesy of Autonomous Surface Vessels Ltd. (ASV Unmanned Marine Systems)

PNT Requirements

- Position, Navigation and Timing (PNT) performance metrics
 - Accuracy
 - Availability
 - Continuity
 - Integrity
- PNT Requirements depend on vehicle and operation
 - Example 1: UAV in Precision agriculture (Accuracy)
 - Example 2: Car platooning (Integrity)
- Can be as stringent as manned vehicle requirements

Photo courtesy of FourthWing Sensors (Farm Intelligence²)

Photo courtesy of Road Safety GB.

Performance Metrics

Availability

 Availability is defined (or computed) as the fraction of time a navigation system is providing position fixes to the specified level of accuracy, integrity and continuity.

Accuracy

Accuracy or Navigation Sensor Error (**NSE**) is defined as the difference between the position estimated by the navigation sensor and the true position of the aircraft which is only exceeded 5% of the time in the absence of system failures.

Integrity

 Integrity risk is the likelihood of an undetected navigation error or failure that results in hazardously misleading information.

Continuity

 Continuity risk is the probability of a detected but unscheduled navigation function interruption after an operation has been initiated.

Webinar Objectives

- What do these performance metrics mean?
- How are they measured?
- What are the software (algorithm) and hardware solutions to achieve these?
- How are the specific PNT requirements achieved in the air, land and marine domain?

Availability Requirements

Sandy Kennedy
Director of Core Cards
NovAtel Inc

Solution Availability

- Defined as how often a position, velocity and time solution is available
- For an Unmanned System (US), the requirement is typically always available in real-time

GNSS Solution Availability

- GNSS solution availability is governed by:
 - View of the sky
 - Signal quality

Maximizing Satellites in View

- Multi-Constellation Support
 - Tracking everything up there is the simplest approach to being able to maximize the number of epochs with a position solution
- In an airborne situation, GPS alone may be sufficient
 - But perhaps not if significant banking occurs
- GNSS not just GPS
 - Include GLONASS, Beidou, Galileo
- By 2020, both Beidou and Galileo are expected to be fully operational

Urban Canyon in North America = GPS + GLO

- In an urban canyon, the addition of GLONASS can enable a position to be computed when GPS alone would not
 - Doesn't provide ideal positioning geometry, but any position is often better than no position

Urban Canyon in Asia = GPS + BDS

 Today in Asia, Beidou coverage is currently quite good, with the high elevation geostationary satellites being especially valuable.

Beidou Visibility – Gold Coast, Australia

Multi-Constellation Support = Choice

- If there is a failure in one constellation, you have others to rely on.
- For each constellation, supporting dual or triple frequency increases the number of measurements available
 - Also provides opportunity for higher accuracy solutions by removing ionospheric errors
- More measurements also means you can be more selective in choosing which ones contribute to the solution
 - More statistical analysis of "good" and "bad" measurements

Interference

- Even with line of sight to a sufficient number of satellites, interference can render the signals in space inaccessible or useless
- The flip side of multi-constellation and multi-frequency support can be interference susceptibility
 - Depends on how the receiver is designed
 - How wide are the paths? Does GPS L1 share a path with GLO L1, or is GLO L1 separate?
 - Depends on the antenna used
 - If you aren't using all the frequencies, do not use a wide band antenna.
- Interference conditions on a UAV can be especially challenging
 - Lots of electronics packed into a small area
 - Other sensors onboard, like radar, can be interference sources
 - Telemetry systems

Frequencies of Interest

Unavoidable Interference: Intentional Jamming

- Anti-Jam Antenna: Null Steering
- A Controlled Reception Pattern Antenna (CRPA) is multiple antenna elements that are used to exploit spatial diversity
- Digital spatial processing is used to modify the apparent gain and phase of the antenna elements to create a new adaptively changing antenna pattern that creates nulls in the direction of the interfering signal
- N-1 degrees of freedom, where N is the number of antenna elements

NovAtel's GAJT (N = 7)

Receiver Design for Interference Robustness

- Some applications cannot bear the size or weight of an anti-jam antenna
- Need to rely on receiver design only then
- Mitigation techniques on the receiver, for example:
 - Digital filtering? (provided you are not saturated)
 - Narrow band design and independent signal tracking let's you "turn off" problem frequencies

Solution Availability vs Accuracy: Multipath Effects

- Multipath is often a dominant error source
 - Especially in urban areas
 - With vehicles approaching large installations or buildings
 - Refueling a small craft from a large tanker
 - Mining vehicle close to a pit wall
 - Especially an issue with high sensitivity receivers
- With GNSS only, it can be difficult to identify and remove or adequately deweight multipath-ed measurements
- The correlator used in the receiver is a key defense against multipath
- Direct reflected signals hard to detect
- Antenna design also key to multipath performance

GNSS Solution Availability Strategies

- Track the signals that are valuable to you!
- Protect those signals
 - Shielding
 - Receiver RF design
 - Antenna design

Ask the Experts – Part 1

Sandy Kennedy Director of Core Cards NovAtel Inc

Andrey Soloviev
Principal
QuNav

Stephen Browne Executive Vice President Veripos

Poll #2

In which of the following unmanned system operating domains are the PNT requirements most stringent? (Please select one)

- Air
- Land
- Marine
- It depends on the operation

Accuracy Requirements

Andrey Soloviev
Principal
QuNav

Accuracy Requirements

There are <u>no general requirements</u>, accuracy is defined by a <u>specific</u> application
 Autonomous driving

Precision agriculture

Centimeter-level accuracy

Decimeter-level accuracy

UAVs

Meter-level accuracy

0.1-2 meters

Autonomous marine vessels

GNSS Positioning Techniques

Positioning Technique	Typical Accuracies
Stand-alone solution	~ 10 meters
Satellite-Based Augmentation Systems (SBAS)	Meter-level
Precise Point Positioning (PPP)	Decimeter - Sub-meter
Real-Time Kinematic (RTK) solution	Centimeter-level

- GNSS can generally meet accuracy requirements when adequate satellite geometry is available (open-sky, suburban areas);

 Otherwise, augmentation with other sensors is required (tree-covered applications, dense urban areas, indoors, underwater)

Main Positioning Techniques

Stand-alone solution

 Satellite-Based Augmentation Systems (SBAS)

Precise Point Positioning (PPP)

Main Positioning Techniques (cont.)

Real-Time Kinematic (RTK) solution Rover receiver Pseudoranges, Carrier phase Ranges Float Code-carrier solution Double smoothing Base receiver differencing Phase Pseudoranges, Resolution of Carrier phase integer ambiguities (LAMBDA)

It's not Just About Positioning!

- Other motion states have to be estimated for <u>trajectory</u> <u>control</u> and <u>trajectory capture</u>:
 - Velocity, acceleration, attitude

Similar to positioning, accuracy requirements are application specific

Example: Geo-registration with UAVs $\delta\alpha=1\,\text{mrad}$ Attitude requirements are height-dependent $h=100\,\text{m}$ $h=100\,\text{m}$

Position accuracy: <u>1 meter</u>

GNSS Velocity Estimation

- Possible Approaches:
 - Position differencing
 - Use of Doppler frequency

Sub-decimeter/second accuracy

Estimation of velocity from temporal changes in carrier phase accuracy

Estimation of velocity from carrier phase

Carrier phase measurement

Temporal differencing

$$\Delta \varphi = -(\mathbf{e}_{SV}, \Delta \mathbf{R}) + SV \text{ motion terms} + \Delta \delta t_{rcvr} + \Delta \varepsilon + \Delta \eta$$

Velocity estimation

GNSS Velocity Estimation (cont.)

Example Test Results

East velocity error, m/s

North velocity error, m/s

Use of multiple antennas and carrier phase interferometry

DGNSS for Unmanned Marine Vessels

Stephen Browne
Executive Vice President
Veripos

Unmanned Marine Vessels (UMV)

- Limited number of production UMVs currently operating, and several prototype UMVs undergoing test and evaluation with other prototypes in the planning stages.
- UMV missions:
 - Military
 - Offshore Oil & Gas
 - Scientific
 - Cargo & Transportation

Photo courtesy of Rolls Royce and Bloomberg Media

Photo courtesy of Aeronautics Defense Systems Ltd.

Photo courtesy of Liquid Robotics & Marinelink.com

The UMV DGNSS Requirement

- Robust, reliable and redundant DGNSS positioning system, most likely integrated with INS:
 - Designed to prevent single-point-failures
 - High-accuracy PPP DGNSS solution
 - Marine Environmental Considerations
 - Position Outputs
 - INS Integration
 - Heading Capability
 - Data logging

GNSS Challenges

- GNSS Issues & Challenges:
 - Multipath
 - Dynamic Motion
 - Antenna location and type
 - Interference
 - Physical system integrity
 - Position integrity, accuracy & repeatability
 - Antenna Blockage caused by platforms

Photo courtesy of Subsea 7

Photo courtesy of Textron Systems

Multipath & Motion Issues

- Multipath issues:
 - Antenna height in relation to water surface
- Motion issues:
 - High dynamic range of motion in various sea states
 - Rapidly changing GNSS constellation elevations
 - Corrections links
- These issues make an argument for an integrated INS/DGNSS solution

Photo courtesy of Autonomous Surface Vessels Ltd. (ASV Unmanned Marine Systems)

Photo courtesy of NovAtel Inc.

Photo courtesy of Veripos Ltd.

Receiver & Antenna Considerations

- Receiver & Antenna Issues:
 - Small vessel design & mast
 - System physical integrity: Integrated Pod system or separate receivers & antenna
 - Receiver capability
 - Analysis and selection of antenna type
 - Interference rejection criteria

Photo & image courtesy of NovAtel Inc.

NovAtel GAJT Antenna

Interference Issues

- Interference in the Marine Environment can generally be classed as in-band interference and out-band interference
 - Causes of In-band interference
 - Causes of Out-band interference
- Extra Consideration: Data-link systems
- Receiver technology, antenna type and mounting location (again)
- DGNSS & INS integration

Courtesy of Veripos Ltd.

Courtesy of the U.S. Department of Commerce

Position Integrity

- The integrity of the DGNSS position will be influenced by the operational criteria of a specific mission type, for instance:
 - Operations requiring absolute accuracy
 - Operations requiring position stability robustness
 - Multi-mission configurable vessels will require both

The Prevention of Single Point Failures

- As with all marine DGNSS operations, the prevention of single point failures will be a key design criteria. There are several areas to be addressed, as follows:
 - Multi-constellation capability
 - Capable of utilizing multiple correction sources simultaneously
 - Integration of INS & DGNSS
 - Redundant systems
 - Different and complimentary systems

Photo courtesy of Veripos Ltd.

System Block Diagram – Example 1

Sources and References

- U.S. Department of Commerce: www.commerce.gov
- Veripos Ltd.: www.veripos.com
- NovAtel Inc.: www.novatel.com
- Subsea 7 Inc.: www.subsea7.com
- Textron Systems: http://www.textronsystems.com/
- Autonomous Surface Vessels Ltd.: <u>www.asvglobal.com</u>
- Liquid Robotics : www.liquidr.com
- Marinelink.com: www.marinelink.com
- Aeronautics Defense Systems Ltd.: www.aeronautics-sys.com
- Rolls Royce: <u>www.rolls-royce.com</u> & <u>www.rolls-royce.com/marine</u>
- Bloomberg Media: <u>www.bloomberg.com</u> & <u>www.businessweek.com</u>
- FourthWing Sensors: http://www.fourthwing.com/
- Farm Intelligence²: http://www.farmintelligence.com/
- Road Safety GB: http://www.roadsafetygb.org.uk/

Visit <u>www.insidegnss.com/webinars</u> for a PDF of the presentations

Register for Unmanned Systems Week Sessions 2 and 3 at www.insidegnss.com/webinars

- Weds, June 4th: GNSS/Inertial + Integration for Unmanned Systems
- Fri, June 6th: Unmanned Solutions & Applications Day

Contact Info:

- •Novatel- <u>www.novatel.com/</u>
- •Sandy Kennedy <u>sandy.kennedy@novatel.com</u>
- •Andrey Soloviev <u>soloviev@qunav.com</u>
- •Stephen Browne <u>stephen.browne@veripos.com</u>

Poll #3

If all regulatory framework is in place, When do you see yourself using unmanned systems? Within: (Please select you one)

- 1 year
- 2 years
- 3 years
- 4 years
- 5 years

Ask the Experts – Part 2

Sandy Kennedy
Director of Core Cards
NovAtel Inc

Andrey Soloviev
Principal
QuNav

Stephen Browne Executive Vice President Veripos

Inside GNSS @ www.insidegnss.com/ www.novatel.com/